Using Edge Histogram Models to Solve Flow Shop Scheduling Problems with Probabilistic Model- Building Genetic Algorithms
نویسندگان
چکیده
In evolutionary algorithms based on probabilistic modeling, the offspring population is generated according to the estimated probability density model of the parent instead of using recombination and mutation operators. In this chapter, we have proposed a probabilistic model-building genetic algorithms (PMBGAs) for solving flow shop scheduling problems using edge histogram based sampling algorithms (EHBSAs). The effectiveness of introducing the tag node (TN) in a string representation is also discussed.
منابع مشابه
Modeling and scheduling no-idle hybrid flow shop problems
Although several papers have studied no-idle scheduling problems, they all focus on flow shops, assuming one processor at each working stage. But, companies commonly extend to hybrid flow shops by duplicating machines in parallel in stages. This paper considers the problem of scheduling no-idle hybrid flow shops. A mixed integer linear programming model is first developed to mathematically form...
متن کاملScheduling of a flexible flow shop with multiprocessor task by a hybrid approach based on genetic and imperialist competitive algorithms
This paper presents a new mathematical model for a hybrid flow shop scheduling problem with multiprocessor tasks in which sequence dependent set up times and preemption are considered. The objective is to minimize the weighted sum of makespan and maximum tardiness. Three meta-heuristic methods based on genetic algorithm (GA), imperialist competitive algorithm (ICA) and a hybrid approach of GA a...
متن کاملThree Hybrid Metaheuristic Algorithms for Stochastic Flexible Flow Shop Scheduling Problem with Preventive Maintenance and Budget Constraint
Stochastic flexible flow shop scheduling problem (SFFSSP) is one the main focus of researchers due to the complexity arises from inherent uncertainties and also the difficulty of solving such NP-hard problems. Conventionally, in such problems each machine’s job process time may encounter uncertainty due to their relevant random behaviour. In order to examine such problems more realistically, fi...
متن کاملThe effect of introducing a tag node in solving scheduling problems using histogram based sampling algorithms
We have proposed probabilistic modelbuilding genetic algorithms (PMBGAs) for solving sequence problems using edge histogram-based sampling algorithms (EHBSAs) in a previous paper. In this paper, we explore the effect of introducing a tag node in string representations for solving flow shop scheduling problems with EHBSAs. The results showed EHBSAs using strings with a tag worked better than EHB...
متن کاملMILP Formulation and Genetic Algorithm for Non-permutation Flow Shop Scheduling Problem with Availability Constraints
In this paper, we consider a flow shop scheduling problem with availability constraints (FSSPAC) for the objective of minimizing the makespan. In such a problem, machines are not continuously available for processing jobs due to preventive maintenance activities. We proposed a mixed-integer linear programming (MILP) model for this problem which can generate non-permutation schedules. Furthermor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004